- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Buse, John_B (2)
-
Gu, Zhen (2)
-
Kahkoska, Anna_R (2)
-
Wang, Jinqiang (2)
-
Yu, Jicheng (2)
-
Lu, Yue (1)
-
Wang, Zejun (1)
-
Wen, Di (1)
-
Zhang, Xudong (1)
-
Zhang, Yuqi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose‐responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed‐loop insulin delivery or “smart insulin” systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose‐responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose‐responsive moieties, including glucose oxidase, phenylboronic acid, and glucose‐binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.more » « less
-
Zhang, Yuqi; Wang, Jinqiang; Yu, Jicheng; Wen, Di; Kahkoska, Anna_R; Lu, Yue; Zhang, Xudong; Buse, John_B; Gu, Zhen (, Small)Abstract Self‐regulating glucose‐responsive insulin delivery systems have great potential to improve clinical outcomes and quality of life among patients with diabetes. Herein, an H2O2‐labile and positively charged amphiphilic diblock copolymer is synthesized, which is subsequently used to form nano‐sized complex micelles (NCs) with insulin and glucose oxidase of pH‐tunable negative charges. Both NCs are loaded into the crosslinked core of a microneedle array patch for transcutaneous delivery. The microneedle core is additionally coated with a thin sheath structure embedding H2O2‐scavenging enzyme to mitigate the injury of H2O2toward normal tissues. The resulting microneedle patch can release insulin with rapid responsiveness under hyperglycemic conditions owing to an oxidative and acidic environment because of glucose oxidation, and can therefore effectively regulate blood glucose levels within a normal range on a chemically induced type 1 diabetic mouse model with enhanced biocompatibility.more » « less
An official website of the United States government
